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Abstract 
 
This paper presents hardware/software co-verification and co-simulation 
concepts and methodologies. Due to the facts that time-to-market challenge has 
increased the need for shortening the development process, new techniques and 
methodologies are introduced. Through the development of ASIC we adopted 
hardware/software co verification as part of our design process.  A fashionable 
technique is to use co-simulation environments in the verification phase of a 
design process. As this technique is being adopted, and the fact that companies 
from a wide industry area are using it, real-time issues are becoming relevant. 
The market goal is to provide the software designers earlier access to an 
executable specification of the hardware for early low-level driver debugging. 
One of the major benefits of using co-verification is the collaboration of the 
hardware and software designers at an earlier phase of the design cycle.  
 
Introduction        

As designs become more complex, standard co-verification techniques can not 
provide fast enough solutions for co-design issues. At the same time, many 
complex SOC (system-on-chip) designs are still using nothing more than a full-
functional simulation model of a microprocessor and waveforms to debug 
complex hardware and software. A full-functional model of a microprocessor 
fetching and executing code in a logic simulator is not co-verification if the only 
means of debugging software are waveforms and assembly-language traces.  

The main goal of co-verification is to get the entire system—hardware and 
software—working before the prototyping stage by providing better visibility into 
its behavior. Co-verification achieves its goals by providing two primary benefits. 
First, software engineers have much earlier access to the hardware design, 
which allows software designers to develop code and test it concurrently with 
hardware design and verification. Performing these activities in parallel save 
more time from the project schedule than the serial method of waiting for the 
prototype to begin software testing. Moreover, the early involvement of the 
software team results in a much better understanding of the underlying hardware 
operation. Second, co-verification provides additional testing for the hardware 
design. In fact, it can provide the true testing that will occur in the embedded 
system, providing better hardware verification than a contrived testbench that 
may not represent real system conditions. The increased confidence in the 
hardware design is invaluable. 



 

There are very many traditional barriers to effective co-design and co-verification 
such as organizational structures and old fashioned paradigms of other 
companies in the same market or concepts developed in the past and worked 
well back then. Suppliers often lack an integrated view of the design process, 
too. What we need are tools which better estimate the constraints between the 
boundaries, before iterating through a difficult flow.  

Using simulation models enable us to find conflicts between top-down 
constraints, which come from design requirements and bottom-up constraints, 
which come from physical data. Bottom-up constraints for software can only be 
realized in a hardware context because the abstraction-level of software is higher 
than that of hardware on which it is executed.  

It is often the case that hardware is available (which is 'physical data'), so this 
can't be changed by software/hardware co-design. Only the software can be 
changed, and it should be fitted to this physical data. Therefore a certain 
modeling strategy is necessary to cover the existing hardware. This modeling 
isn't easy and it will never be perfect because the reality is too complex to find a 
perfect model. As to that it seems easier to design both hardware and software, 
because it is often easier to design two things that have to work together, than 
design one thing, and fit it around another. But if both hardware and software 
have to designed, powerful verification is essential because you have to design 
two different 'products' that interact with each other and nothing is 'physical' on 
both 'products'. Of course different techniques have been developed to verify 
combined hardware-software systems, but each of them has its own limitations. 
It's possible to run code on models of hardware emulated through dedicated 
programmable hardware, offering near real-time speed for code execution. 
Unfortunately, sometimes real-time interaction with other hardware and external 
environments is required, so full speed code execution isn't supported.  

Hardware-software co-design exists for several decades. Ensuring system 
capabilities, designers had to face the realities of combining digital computing 
with software algorithms. Verifying interaction between these two prototypes, 
hardware had to be built. In the '90s this won't be sufficient because co-design is 
turning from a good idea into an economic necessity. Predictions for the future 
point to greater embedded software content in hardware systems than ever 
before. Changes had to be done in order to speed up and improve traditional 
software-hardware co-design. The developments had to focus in two major 
areas. One, top-down system level co-design and co-synthesis work at 
universities. Two, major advances made by EDA vendors in high speed 
emulation systems. Co-design focuses on the areas of system specification, 
architectural design, hardware-software partitioning and iteration between 
hardware and software as design progresses. Finally, co-design is complimented 
by hardware-software integration and tested. Also, design re-use is being applied 



more often. Previous and current generation IC's are finding their way into new 
designs as embedded cores in a mix-and-match fashion. This requires greater 
convergence of methodologies for co-design and co-verification and high 
demands on system-on-a-chip (SoC) density. That's why this concept was an 
avoided for many years, until recently. In the future the need for tools to estimate 
the impact of design changes earlier in the design process will increase.  

To get a hold of elusive design errors, quickly applying the right modeling 
strategy at the right time is essential. It is often necessary to consider multiple 
models, but how can multiple approaches be fit into a very tight design process? 
This depends on the goals and constraints of the design project as well as the 
computational environment and the end-use. To find the right approach, iteration 
is the only way out.  

Due to the fact that there is no widely accepted methodology or tool available to 
help designers create a functional specification, mostly unplanned manners are 
used, heavily relying on informal and manual techniques and exploring only few 
possibilities. There should be developed a hierarchical modeling methodology to 
improve this situation. The main concern in such a methodology is precisely 
specifying the system's functionality and exploring system-level implementations. 
Creating a system-level design requires some steps to be taken:  

A. Specification capture: Decomposing functionality into pieces by creating a 
conceptual model of the system. The result is a functional specification, 
which lacks any implementation detail.  

B. Specification: Detailed specifications to ensure complete coverage. 
C. Software and hardware: The implementation of testing together as a 

complete system. Software and hardware apparatus is required, using 
software and hardware design techniques.  

D. Design Exploration: Design Exploration of alternatives and estimating their 
quality to find the best result.  

E. Physical design: Manufacturing data is generated for each component. 
F. QA – Creating an entire QA mechanism for complete testing to ensure 

required results. 

When successfully run over the steps above, design methodology from product 
conceptualization to manufacturing is roughly defined. This hierarchical modeling 
methodology enables high productivity, preserving consistency through all levels 
and thus avoiding unnecessary iteration, which makes the process more efficient 
and faster.  

Describing a system's functionality, its functionality should first be decomposed 
and relationships between the pieces should be described. There are many 
models for describing a system's functionality. The next are the most typical 
models. 



A. Finite-State Machine (FSM). This model represented as a set of states 
and a set of arcs that indicate transition of the system from one state to 
another as a result of certain occurring events.  

B. Data-flow graph. A data-flow graph decomposes functionality into data-
transforming activities and the dataflow between these activities.  

C. Communicating Sequential Processes (CSP). This model decomposes the 
system into a set of concurrently executing processes, processes that 
execute program instructions sequentially.  

D. Program-State Machine (PSM). This model combines FSM and CSP by 
permitting each state of a concurrent FSM to contain actions, described by 
program instructions.  

It is important to note that no model is perfect for all classes of systems. The best 
one should be chosen, matching closely as possible the characteristics of the 
system into the models. This procedure should be done very accurately due to 
the fact that the choice of a model is the most important influence on the ability to 
understand and define system functionality during system specification.  

Specifying functionality, several languages are commonly used by designers. 
VHDL and Verilog are very popular standards because of the easy description of 
a CSP model through their process and sequential-statement constructs. Other 
languages are used as well but none of them directly supports state transitions. 
Just like some models are better suitable for specific systems, some languages 
are better suitable for specific models than others.  

Hardware/Software co-verification tools permit software to be executed on a 
hardware design, while the hardware design is being simulated in a HDL 
simulator. These tools are available from the major EDA vendors. On the 
hardware side, the HDL simulator is used to run, control, and debug the 
hardware design; on the software side an embedded debugger is used to 
display, and control the execution of the software. Using a co-verification tool 
also requires a model of the processor in the simulated design. These processor 
models are generally available from the EDA vendor, but in several cases are 
now available from the silicon vendors. All co-verification tools achieve 
reasonable levels of performance, with respect to the software, by hiding bus 
transactions from the logic simulator. Bus cycles modeled in the logic simulator 
run at logic simulation speeds, about 10 cycles per second while hidden cycles 
can be processed at around 100,000 cycles per second. The “hidden” bus cycles 
are generally uninteresting activity that does not impact the operation of the 
hardware, such as instruction fetches and software data space references.  
When looking into co-verification tools, the technology is still evolving.  
 
 
 
 
 



Concepts and Methodologies 
 
EDA vendors are in constant race to improve the tools capabilities and 
performance to match a wide variety of designs. One of the most important 
features of a co verification tool is the ability of the tool to handle complex 
designs. Another concern is handling properly operation with “hidden” bus cycles. 
Without being able to take advantage of this cycle “hiding” the performance of the 
simulations would be too slow to be useful.  Hidden transactions are processed 
against a memory array that is not contained in memory instances the logic 
simulator. For example the tools V-CPU from Summit and Eagle-I from Synopsys 
effectively approaching this problem by partitioning the memory space of the 
system into software and hardware regions. Accesses into the “software” 
memory regions are “hidden” and accesses into the hardware regions are run in 
the logic simulator. Mentor’s tool, Seamless-CVE has a similar concept of 
hardware and software memory, but stores the data in what they call a “memory 
image server” for both hardware and software regions. The obvious benefit of 
Mentor’s approach is that the hardware and software partition can be changed 
while the simulation is running. There are a couple of not so obvious benefits that 
result from this difference as well. The main benefit is debug visibility. With V-
CPU and Eagle-I the memory partitioning limits debug visibility. The hardware 
simulator can only see, and therefore can only debug, the hardware partition of 
the memory. 
 
Likewise, the software debugger only has access to the software partition. With 
Seamless CVE, both the logic simulator and software debugger have visibility 
into the entire memory space of the system being simulated. The other benefit of 
Mentor’s technology is the ability to turn off the cycle “hiding.” The architecture of 
the memory image server allows the partitioning of memory regions between 
hardware and software to be changed. In fact, it can be changed during a 
simulation run. By changing this partition so that all memory is defined as 
hardware memory, you can turn off the cycle hiding aspect of the simulation. This 
means that all bus cycles will be driven through the logic simulator. Effectively, 
the co-verification processor model is turned into a full functional processor 
model for a portion of the simulation. This is critical during hardware operations 
where the presentation of events from the processor is sensitive to timing. 
Mentor’s technology has its share of drawbacks. Seamless CVE is a bit more 
complex to setup, when compared with its competitors. This extra setup is 
required by the memory image server. Another annoying limitation of Seamless 
CVE is its inability to run across the network; that is run the software debugger 
on a Pentium based PC while the logic simulation runs on a workstation, with 
communication across a network. 
 
Software programmers have a few tools and methodologies to develop and 
debug embedded software. A standalone ISS (Instruction Set Simulation) can be 
used to run compiled code locally on a host workstation or PC. Device drivers 
and other routines that interact with the hardware must be stubbed out, or the 



hardware must be emulated within a debugger macro language. Two 
disadvantages of this approach are the limitations of the macro language, and 
the accuracy of the implementation of the macros. An evaluation board that 
contains the target CPU is often used, and has the advantage of real time 
performance. Its disadvantage is that its hardware resources are general 
purpose and bear no or little resemblance to the final product. An FPGA 
prototype can be created to mimic the hardware to be deployed, but this is a 
complex undertaking, especially for designs that consume multiple FPGA’s. 
One solution to accurate hardware/software verification is to use the ISS of the 
target CPU and “connect” it to the hardware simulator being used by the 
hardware design group. One obvious disadvantage of this is that the software 
execution is limited to the speed of the hardware simulator. The Seamless. Co- 
Verification package from Mentor Graphics increases the speed of the ISS-
Hardware Simulator “connection” by allowing most of the ISS instruction cycles to 
run decoupled from the hardware simulator. This patented technology termed 
“optimizations” has been used to generate successful Silicon on Chip (SoC) 
tape-outs, as well as CPU based board designs. 
 
Another interesting tool is an RTOS (Real Time Operating System) simulator. An 
RTOS simulator does not emulate the instruction set of a CPU; instead it models 
the resources of the RTOS itself. This allows the programmer to develop and 
debug task level operations. The RTOS simulator is a higher level of abstraction 
than an ISS. It is CPU independent and does not require (or allow) assembly 
code. It is possible to “connect” an RTOS simulator to the hardware simulator 
through Seamless. At this level of abstraction, it is possible to observe the 
threads of execution, and how they interact with the hardware. The effect is the 
appearance that thousands of software cycles have run in conjunction with the 
hardware in essentially zero time. In other words, the RTOS can be initialized, 
application tasks started, and the software ready to interact with the hardware 
before the hardware simulator has advanced. Once in this state, the hardware 
will be initialized by the RTOS application, and hardware interaction begins. The 
software can now perform system level transactions with the hardware. This test 
environment is not concerned with CPU instructions, it will be used to exercise 
high-level operations in hardware and software; its performance will be bounded 
by the amount of hardware simulator time needed to perform a given software or 
testbench request. 
 
The verification process occupies an increasing part of the total development 
time especially for real-time systems and today it is often the bottleneck in the 
development process. The increase in time for the validation stage is mainly 
dependent on four parameters: 
A. Increasing of software complexity 
B. Increasing of hardware complexity 
C. Complex and high frequency of interaction between hardware and software, 
D. The desire to produce a ”correct at first time” design. 
 



Shortening the development process it is a key demand to decrease the 
verification time. The new EDA tools particularly for developing application-
specific circuits (ASIC) have drastically reduced the design time. Today the 
verification time is the bottle neck in the development process for ASICs. Both in 
the software and hardware design processes the verification time is over 60-
80%. In today’s design processes the verification phase has become the major 
part, not only because it is time consuming but also due to the increasing 
complexity in both hardware and software. The partitioning of functionality in both 
hardware and software also increases the frequency of interaction between 
them. These parameters among others make co-verification an important factor 
in the design process. Today there are different methods for co-verification, but 
the goal, which is to verify software and hardware execution respectively, 
remains the same. 
 
Without target hardware, verification of software code is today mostly done using 
cross development tools (compilers, debuggers, simulators, etc.). Whenever a 
peripheral hardware component is to be accessed, a piece of code simulating the 
component is executed instead. Thus, at least verification of the functional 
behavior of the software can be achieved. Another method for software 
verification is to use the more realistic approach which uses existing hardware, 
typically implemented as a prototype. This method also enables a more timing 
accurate verification. The major disadvantage is that software is verified late in 
the design process. On the hardware side typically one is interested in 
verification of the interaction (accesses, handshaking, interrupts, signals, etc.) 
between software and ASICs and other system components. (Figure 1) ASICs 
are typically designed at register transfer level (RT). This level represents a 
complete functional model of the ASIC. The model must be verified in detail to 
demonstrate correct functioning together with the surrounding components and 
the software. One approach to achieve this is to use testbenches. In a testbench 
model the ASIC to be verified is instanced as a component. Using models of the 
surrounding components (e.g. CPUs, RAM, I/O, etc.) can provide input, thus 
enabling verification of the responses according to specification. Typically this is 
simulated on a workstation, often at a slow simulation speed if the designs are 
large. Consequently, simulation of software execution is a slow process which 
makes it difficult to simulate a complete program. The end result is fairly long 
time consuming procedure. Although we are evidencing an improvement in EDA 
tools co-simulation and co verification capabilities, a major improvement is 
needed.  
 
After verification at the RT-level has been performed, the verification process 
typically continues on a fast prototype. Today a fast prototype is implemented in 
either a FPGA (Field Programmable Gate Array) or in hardware emulator 
(typically uses FPGAs). Enhancing speed of the hardware simulation is typically 
done on a workstation, enabling faster execution of software and complete 
programs can be verified. The major advantage when using FPGAs is the ability 
to make changes to a design very quickly compared to the traditional ASIC 



fabrication. While the emulator preserves the visibility into a design, the use of 
FPGAs only has limited visibility. Viewing internal signal states in a FPGA can be 
easily done via routing the signals out to external pins. One disadvantage in the 
FPGA/emulator technique is that the timing is much slower in comparison with 
that in the ASIC. Also, both emulation and FPGA are relatively expensive to use. 
Co-simulation for verification has recently been introduced as an alternative to 
testbenches and in some cases to fast prototyping. In fact, the idea of co 
simulation was derived from using testbenches with processor models. The idea 
of the new method is to have real software execution as the event driver in a 
testbench and also to reduce the impact of software simulation time in the 
traditional testbench. An engine models the CPU which is instanced by a 
testbench (typically using VHDL or Verilog).  
 
 
There are different methods used to run the CPU engine, but the overall 
technique in common is to conceal it from the processor’s interfacing to the 
hardware. Figure 2 illustrates a schematic overview of the connection of the 
hardware with the software through a controlling unit, a so-called co-simulation 
kernel. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Testbench for a System Simulation 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Today there are two major commercial tools available, EagleI from Synopsys 
(Originally from ViewLogic), and Seamless from Mentor Graphics. They are very 
similar but they use different techniques. An overview of the techniques used in 
these tools is presented below.  
 
Seamless Co-Verification Environment 
 
The Seamless environment enables software and hardware development to be 
parallel activities, removing the software from the critical path, and reducing the 
risk of hardware prototype iterations resulting from integration errors. In 
Seamless, the processor’s functionality is separated from its interface. A Bus 
Interface Model (BIM) simulates the input/output pin behavior for the hardware 
portion of the simulation. The software portion executes as a separate process, 
allowing much faster execution, either on an Instruction Set Simulator (ISS) or as 
Native Compiled Software (NCS). The ISS executes machine code produced by 
cross-compilers for specific processors. NCS is software compiled for execution 
on the host machine. Communication between SW and HW is controlled by the 
co-simulation Kernel (CSK). Figure 3 shows the architectural structure in which 
Seamless operates. Supported ISSs and BIMs, respectively, are developed for 
the most popular processors on the market. Examples on processors include the 
x86 family, 68k, and the PowerPCs. These processors are not always fully 
modelled and there are some limitations. Some of these limitations are the lack 
of (or reduced functionality in) caches and memory management units (MMUs). 
Apart from supported processor models, there are also different types of memory 
models available. These memory models have a particular connection to 

 
Figure 2: Co-Simulation Environment 



Seamless which enables optimization of bus-cycles (generated by the BIM) for 
instruction fetches and data access. Supported types include SRAMs, DRAMs, 
FIFOs and register elements. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Seamless’ Architecture 
Image Source: Mentor Graphics 



EagleI  
 
Similar to the CSK in Seamless, EagleI uses the VSP (Virtual Software 
Processor) to control the co simulation. EagleI supports three different models, 
VSP/Link, VSP/Sim and VSP/Tap, each suitable at different stages in a design 
process. The VSP/Link model uses a technique similar to the NCS execution 
(see below) which also is the fastest model. Also here, the VSP/Sim model is like 
an ISS with a true cycle behavior. Not represented in Seamless’ environment, is 
the VSP/Tap model which is a VSP that includes hardware in the form of an In-
Circuit-Emulator (ICE). This technique is similar to the ISS but with the extension 
of a hardware accelerator. Using an ICE the visibility needed is kept, thus it’s 
possible to investigate internal registers and memory. 
 
Native Compiled Software 
 
Simulation using NCS is the fastest method when compared with the ISS 
approach because software is run directly on the workstation. NCS is easily 
produced by compiling software coded in any high-level language. Thus 
debugging of NCS can be done using a standard workstation debugger (e.g. 
dbx). The connection to the hardware process is done by placing calls to the 
VSP/BIM through an Application Program Interface (API). This interaction only 
drives the VSP/BIM pins to their defined values and cycles. The modeled 
processors’ internal registers and cache memory is not available in this 
approach. 
 
Instruction Set Simulator 
 
An ISS is a software application that models the functional behavior of a 
processor’s instruction set. It runs much faster than a hardware simulation 
because it needs not to cope with a processor’s internal signal transitions. Since 
it is machine code for the target processor that is executed, Users can use any 
language supported by the cross-development tools. The ISS reports the number 
of clock cycles required for a given instruction to the VSP/CSK. Notification of 
external events (e.g. interrupts, resets) from the VSP/BIM is reported to the ISS 
by way of the VSP/CSK. 
 
 
 
 
 
 
 
 
 
 
 



Conclusions 
 
Co-Verification and co-simulation have significantly increased system’s visibility. 
Verifying and Simulating software execution using an ISS on a cycle accurate 
model, timing information can easily be retrieved and be used as feedback when 
determining task execution flow. Co-simulation has shown to be suitable for 
verification of task switching, IRQ response time, and software access of 
hardware components. Due to the slow speed of hardware simulation it is difficult 
to verify large applications and complete systems. Thus, co-simulation will yet not 
verify all possible interference’s between hardware and software. In many cases 
it surely will reduce design time, but as verification tool for ASIC design in large 
systems it will still not exclude the need of FPGAs for fast prototyping. Lack of 
functionality like caches and MMUs in processor models (Seamless’) are still a 
problem. A model has to be as equivalent to the real hardware as possible, 
especially when it comes in use in embedded real-time systems. Today, more 
focus is on system-level design, viewing the total project as a complete system 
instead of the individual parts—chips, boards, chassis, and software. 
Corporations are looking for ways to shorten the project schedule and increase 
confidence in the design. At the verification level, this method translates into 
selecting the best tools to build a productive environment for both hardware and 
software engineers. A single integrated system for logic simulation, simulation 
acceleration, and system emulation, along with the concurrent debugging 
capabilities of both hardware and software, provides the best platform to get the 
project done in the shortest amount of time. The ability to easily transition 
between these models and modes of operation provides the greatest flexibility 
and control over the entire verification process. 
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