
Hardware/Software Co-verification & Co-Simulation
Dr. Danny Rittman

danny@tayden.com

December 2004

Abstract

This paper presents hardware/software co-verification and co-simulation
concepts and methodologies. Due to the facts that time-to-market challenge has
increased the need for shortening the development process, new techniques and
methodologies are introduced. Through the development of ASIC we adopted
hardware/software co verification as part of our design process. A fashionable
technique is to use co-simulation environments in the verification phase of a
design process. As this technique is being adopted, and the fact that companies
from a wide industry area are using it, real-time issues are becoming relevant.
The market goal is to provide the software designers earlier access to an
executable specification of the hardware for early low-level driver debugging.
One of the major benefits of using co-verification is the collaboration of the
hardware and software designers at an earlier phase of the design cycle.

Introduction

As designs become more complex, standard co-verification techniques can not
provide fast enough solutions for co-design issues. At the same time, many
complex SOC (system-on-chip) designs are still using nothing more than a full-
functional simulation model of a microprocessor and waveforms to debug
complex hardware and software. A full-functional model of a microprocessor
fetching and executing code in a logic simulator is not co-verification if the only
means of debugging software are waveforms and assembly-language traces.

The main goal of co-verification is to get the entire system—hardware and
software—working before the prototyping stage by providing better visibility into
its behavior. Co-verification achieves its goals by providing two primary benefits.
First, software engineers have much earlier access to the hardware design,
which allows software designers to develop code and test it concurrently with
hardware design and verification. Performing these activities in parallel save
more time from the project schedule than the serial method of waiting for the
prototype to begin software testing. Moreover, the early involvement of the
software team results in a much better understanding of the underlying hardware
operation. Second, co-verification provides additional testing for the hardware
design. In fact, it can provide the true testing that will occur in the embedded
system, providing better hardware verification than a contrived testbench that
may not represent real system conditions. The increased confidence in the
hardware design is invaluable.

There are very many traditional barriers to effective co-design and co-verification
such as organizational structures and old fashioned paradigms of other
companies in the same market or concepts developed in the past and worked
well back then. Suppliers often lack an integrated view of the design process,
too. What we need are tools which better estimate the constraints between the
boundaries, before iterating through a difficult flow.

Using simulation models enable us to find conflicts between top-down
constraints, which come from design requirements and bottom-up constraints,
which come from physical data. Bottom-up constraints for software can only be
realized in a hardware context because the abstraction-level of software is higher
than that of hardware on which it is executed.

It is often the case that hardware is available (which is 'physical data'), so this
can't be changed by software/hardware co-design. Only the software can be
changed, and it should be fitted to this physical data. Therefore a certain
modeling strategy is necessary to cover the existing hardware. This modeling
isn't easy and it will never be perfect because the reality is too complex to find a
perfect model. As to that it seems easier to design both hardware and software,
because it is often easier to design two things that have to work together, than
design one thing, and fit it around another. But if both hardware and software
have to designed, powerful verification is essential because you have to design
two different 'products' that interact with each other and nothing is 'physical' on
both 'products'. Of course different techniques have been developed to verify
combined hardware-software systems, but each of them has its own limitations.
It's possible to run code on models of hardware emulated through dedicated
programmable hardware, offering near real-time speed for code execution.
Unfortunately, sometimes real-time interaction with other hardware and external
environments is required, so full speed code execution isn't supported.

Hardware-software co-design exists for several decades. Ensuring system
capabilities, designers had to face the realities of combining digital computing
with software algorithms. Verifying interaction between these two prototypes,
hardware had to be built. In the '90s this won't be sufficient because co-design is
turning from a good idea into an economic necessity. Predictions for the future
point to greater embedded software content in hardware systems than ever
before. Changes had to be done in order to speed up and improve traditional
software-hardware co-design. The developments had to focus in two major
areas. One, top-down system level co-design and co-synthesis work at
universities. Two, major advances made by EDA vendors in high speed
emulation systems. Co-design focuses on the areas of system specification,
architectural design, hardware-software partitioning and iteration between
hardware and software as design progresses. Finally, co-design is complimented
by hardware-software integration and tested. Also, design re-use is being applied

more often. Previous and current generation IC's are finding their way into new
designs as embedded cores in a mix-and-match fashion. This requires greater
convergence of methodologies for co-design and co-verification and high
demands on system-on-a-chip (SoC) density. That's why this concept was an
avoided for many years, until recently. In the future the need for tools to estimate
the impact of design changes earlier in the design process will increase.

To get a hold of elusive design errors, quickly applying the right modeling
strategy at the right time is essential. It is often necessary to consider multiple
models, but how can multiple approaches be fit into a very tight design process?
This depends on the goals and constraints of the design project as well as the
computational environment and the end-use. To find the right approach, iteration
is the only way out.

Due to the fact that there is no widely accepted methodology or tool available to
help designers create a functional specification, mostly unplanned manners are
used, heavily relying on informal and manual techniques and exploring only few
possibilities. There should be developed a hierarchical modeling methodology to
improve this situation. The main concern in such a methodology is precisely
specifying the system's functionality and exploring system-level implementations.
Creating a system-level design requires some steps to be taken:

A. Specification capture: Decomposing functionality into pieces by creating a
conceptual model of the system. The result is a functional specification,
which lacks any implementation detail.

B. Specification: Detailed specifications to ensure complete coverage.
C. Software and hardware: The implementation of testing together as a

complete system. Software and hardware apparatus is required, using
software and hardware design techniques.

D. Design Exploration: Design Exploration of alternatives and estimating their
quality to find the best result.

E. Physical design: Manufacturing data is generated for each component.
F. QA – Creating an entire QA mechanism for complete testing to ensure

required results.

When successfully run over the steps above, design methodology from product
conceptualization to manufacturing is roughly defined. This hierarchical modeling
methodology enables high productivity, preserving consistency through all levels
and thus avoiding unnecessary iteration, which makes the process more efficient
and faster.

Describing a system's functionality, its functionality should first be decomposed
and relationships between the pieces should be described. There are many
models for describing a system's functionality. The next are the most typical
models.

A. Finite-State Machine (FSM). This model represented as a set of states
and a set of arcs that indicate transition of the system from one state to
another as a result of certain occurring events.

B. Data-flow graph. A data-flow graph decomposes functionality into data-
transforming activities and the dataflow between these activities.

C. Communicating Sequential Processes (CSP). This model decomposes the
system into a set of concurrently executing processes, processes that
execute program instructions sequentially.

D. Program-State Machine (PSM). This model combines FSM and CSP by
permitting each state of a concurrent FSM to contain actions, described by
program instructions.

It is important to note that no model is perfect for all classes of systems. The best
one should be chosen, matching closely as possible the characteristics of the
system into the models. This procedure should be done very accurately due to
the fact that the choice of a model is the most important influence on the ability to
understand and define system functionality during system specification.

Specifying functionality, several languages are commonly used by designers.
VHDL and Verilog are very popular standards because of the easy description of
a CSP model through their process and sequential-statement constructs. Other
languages are used as well but none of them directly supports state transitions.
Just like some models are better suitable for specific systems, some languages
are better suitable for specific models than others.

Hardware/Software co-verification tools permit software to be executed on a
hardware design, while the hardware design is being simulated in a HDL
simulator. These tools are available from the major EDA vendors. On the
hardware side, the HDL simulator is used to run, control, and debug the
hardware design; on the software side an embedded debugger is used to
display, and control the execution of the software. Using a co-verification tool
also requires a model of the processor in the simulated design. These processor
models are generally available from the EDA vendor, but in several cases are
now available from the silicon vendors. All co-verification tools achieve
reasonable levels of performance, with respect to the software, by hiding bus
transactions from the logic simulator. Bus cycles modeled in the logic simulator
run at logic simulation speeds, about 10 cycles per second while hidden cycles
can be processed at around 100,000 cycles per second. The “hidden” bus cycles
are generally uninteresting activity that does not impact the operation of the
hardware, such as instruction fetches and software data space references.
When looking into co-verification tools, the technology is still evolving.

Concepts and Methodologies

EDA vendors are in constant race to improve the tools capabilities and
performance to match a wide variety of designs. One of the most important
features of a co verification tool is the ability of the tool to handle complex
designs. Another concern is handling properly operation with “hidden” bus cycles.
Without being able to take advantage of this cycle “hiding” the performance of the
simulations would be too slow to be useful. Hidden transactions are processed
against a memory array that is not contained in memory instances the logic
simulator. For example the tools V-CPU from Summit and Eagle-I from Synopsys
effectively approaching this problem by partitioning the memory space of the
system into software and hardware regions. Accesses into the “software”
memory regions are “hidden” and accesses into the hardware regions are run in
the logic simulator. Mentor’s tool, Seamless-CVE has a similar concept of
hardware and software memory, but stores the data in what they call a “memory
image server” for both hardware and software regions. The obvious benefit of
Mentor’s approach is that the hardware and software partition can be changed
while the simulation is running. There are a couple of not so obvious benefits that
result from this difference as well. The main benefit is debug visibility. With V-
CPU and Eagle-I the memory partitioning limits debug visibility. The hardware
simulator can only see, and therefore can only debug, the hardware partition of
the memory.

Likewise, the software debugger only has access to the software partition. With
Seamless CVE, both the logic simulator and software debugger have visibility
into the entire memory space of the system being simulated. The other benefit of
Mentor’s technology is the ability to turn off the cycle “hiding.” The architecture of
the memory image server allows the partitioning of memory regions between
hardware and software to be changed. In fact, it can be changed during a
simulation run. By changing this partition so that all memory is defined as
hardware memory, you can turn off the cycle hiding aspect of the simulation. This
means that all bus cycles will be driven through the logic simulator. Effectively,
the co-verification processor model is turned into a full functional processor
model for a portion of the simulation. This is critical during hardware operations
where the presentation of events from the processor is sensitive to timing.
Mentor’s technology has its share of drawbacks. Seamless CVE is a bit more
complex to setup, when compared with its competitors. This extra setup is
required by the memory image server. Another annoying limitation of Seamless
CVE is its inability to run across the network; that is run the software debugger
on a Pentium based PC while the logic simulation runs on a workstation, with
communication across a network.

Software programmers have a few tools and methodologies to develop and
debug embedded software. A standalone ISS (Instruction Set Simulation) can be
used to run compiled code locally on a host workstation or PC. Device drivers
and other routines that interact with the hardware must be stubbed out, or the

hardware must be emulated within a debugger macro language. Two
disadvantages of this approach are the limitations of the macro language, and
the accuracy of the implementation of the macros. An evaluation board that
contains the target CPU is often used, and has the advantage of real time
performance. Its disadvantage is that its hardware resources are general
purpose and bear no or little resemblance to the final product. An FPGA
prototype can be created to mimic the hardware to be deployed, but this is a
complex undertaking, especially for designs that consume multiple FPGA’s.
One solution to accurate hardware/software verification is to use the ISS of the
target CPU and “connect” it to the hardware simulator being used by the
hardware design group. One obvious disadvantage of this is that the software
execution is limited to the speed of the hardware simulator. The Seamless. Co-
Verification package from Mentor Graphics increases the speed of the ISS-
Hardware Simulator “connection” by allowing most of the ISS instruction cycles to
run decoupled from the hardware simulator. This patented technology termed
“optimizations” has been used to generate successful Silicon on Chip (SoC)
tape-outs, as well as CPU based board designs.

Another interesting tool is an RTOS (Real Time Operating System) simulator. An
RTOS simulator does not emulate the instruction set of a CPU; instead it models
the resources of the RTOS itself. This allows the programmer to develop and
debug task level operations. The RTOS simulator is a higher level of abstraction
than an ISS. It is CPU independent and does not require (or allow) assembly
code. It is possible to “connect” an RTOS simulator to the hardware simulator
through Seamless. At this level of abstraction, it is possible to observe the
threads of execution, and how they interact with the hardware. The effect is the
appearance that thousands of software cycles have run in conjunction with the
hardware in essentially zero time. In other words, the RTOS can be initialized,
application tasks started, and the software ready to interact with the hardware
before the hardware simulator has advanced. Once in this state, the hardware
will be initialized by the RTOS application, and hardware interaction begins. The
software can now perform system level transactions with the hardware. This test
environment is not concerned with CPU instructions, it will be used to exercise
high-level operations in hardware and software; its performance will be bounded
by the amount of hardware simulator time needed to perform a given software or
testbench request.

The verification process occupies an increasing part of the total development
time especially for real-time systems and today it is often the bottleneck in the
development process. The increase in time for the validation stage is mainly
dependent on four parameters:
A. Increasing of software complexity
B. Increasing of hardware complexity
C. Complex and high frequency of interaction between hardware and software,
D. The desire to produce a ”correct at first time” design.

Shortening the development process it is a key demand to decrease the
verification time. The new EDA tools particularly for developing application-
specific circuits (ASIC) have drastically reduced the design time. Today the
verification time is the bottle neck in the development process for ASICs. Both in
the software and hardware design processes the verification time is over 60-
80%. In today’s design processes the verification phase has become the major
part, not only because it is time consuming but also due to the increasing
complexity in both hardware and software. The partitioning of functionality in both
hardware and software also increases the frequency of interaction between
them. These parameters among others make co-verification an important factor
in the design process. Today there are different methods for co-verification, but
the goal, which is to verify software and hardware execution respectively,
remains the same.

Without target hardware, verification of software code is today mostly done using
cross development tools (compilers, debuggers, simulators, etc.). Whenever a
peripheral hardware component is to be accessed, a piece of code simulating the
component is executed instead. Thus, at least verification of the functional
behavior of the software can be achieved. Another method for software
verification is to use the more realistic approach which uses existing hardware,
typically implemented as a prototype. This method also enables a more timing
accurate verification. The major disadvantage is that software is verified late in
the design process. On the hardware side typically one is interested in
verification of the interaction (accesses, handshaking, interrupts, signals, etc.)
between software and ASICs and other system components. (Figure 1) ASICs
are typically designed at register transfer level (RT). This level represents a
complete functional model of the ASIC. The model must be verified in detail to
demonstrate correct functioning together with the surrounding components and
the software. One approach to achieve this is to use testbenches. In a testbench
model the ASIC to be verified is instanced as a component. Using models of the
surrounding components (e.g. CPUs, RAM, I/O, etc.) can provide input, thus
enabling verification of the responses according to specification. Typically this is
simulated on a workstation, often at a slow simulation speed if the designs are
large. Consequently, simulation of software execution is a slow process which
makes it difficult to simulate a complete program. The end result is fairly long
time consuming procedure. Although we are evidencing an improvement in EDA
tools co-simulation and co verification capabilities, a major improvement is
needed.

After verification at the RT-level has been performed, the verification process
typically continues on a fast prototype. Today a fast prototype is implemented in
either a FPGA (Field Programmable Gate Array) or in hardware emulator
(typically uses FPGAs). Enhancing speed of the hardware simulation is typically
done on a workstation, enabling faster execution of software and complete
programs can be verified. The major advantage when using FPGAs is the ability
to make changes to a design very quickly compared to the traditional ASIC

fabrication. While the emulator preserves the visibility into a design, the use of
FPGAs only has limited visibility. Viewing internal signal states in a FPGA can be
easily done via routing the signals out to external pins. One disadvantage in the
FPGA/emulator technique is that the timing is much slower in comparison with
that in the ASIC. Also, both emulation and FPGA are relatively expensive to use.
Co-simulation for verification has recently been introduced as an alternative to
testbenches and in some cases to fast prototyping. In fact, the idea of co
simulation was derived from using testbenches with processor models. The idea
of the new method is to have real software execution as the event driver in a
testbench and also to reduce the impact of software simulation time in the
traditional testbench. An engine models the CPU which is instanced by a
testbench (typically using VHDL or Verilog).

There are different methods used to run the CPU engine, but the overall
technique in common is to conceal it from the processor’s interfacing to the
hardware. Figure 2 illustrates a schematic overview of the connection of the
hardware with the software through a controlling unit, a so-called co-simulation
kernel.

Figure 1: Testbench for a System Simulation

Today there are two major commercial tools available, EagleI from Synopsys
(Originally from ViewLogic), and Seamless from Mentor Graphics. They are very
similar but they use different techniques. An overview of the techniques used in
these tools is presented below.

Seamless Co-Verification Environment

The Seamless environment enables software and hardware development to be
parallel activities, removing the software from the critical path, and reducing the
risk of hardware prototype iterations resulting from integration errors. In
Seamless, the processor’s functionality is separated from its interface. A Bus
Interface Model (BIM) simulates the input/output pin behavior for the hardware
portion of the simulation. The software portion executes as a separate process,
allowing much faster execution, either on an Instruction Set Simulator (ISS) or as
Native Compiled Software (NCS). The ISS executes machine code produced by
cross-compilers for specific processors. NCS is software compiled for execution
on the host machine. Communication between SW and HW is controlled by the
co-simulation Kernel (CSK). Figure 3 shows the architectural structure in which
Seamless operates. Supported ISSs and BIMs, respectively, are developed for
the most popular processors on the market. Examples on processors include the
x86 family, 68k, and the PowerPCs. These processors are not always fully
modelled and there are some limitations. Some of these limitations are the lack
of (or reduced functionality in) caches and memory management units (MMUs).
Apart from supported processor models, there are also different types of memory
models available. These memory models have a particular connection to

Figure 2: Co-Simulation Environment

Seamless which enables optimization of bus-cycles (generated by the BIM) for
instruction fetches and data access. Supported types include SRAMs, DRAMs,
FIFOs and register elements.

Figure 3: Seamless’ Architecture
Image Source: Mentor Graphics

EagleI

Similar to the CSK in Seamless, EagleI uses the VSP (Virtual Software
Processor) to control the co simulation. EagleI supports three different models,
VSP/Link, VSP/Sim and VSP/Tap, each suitable at different stages in a design
process. The VSP/Link model uses a technique similar to the NCS execution
(see below) which also is the fastest model. Also here, the VSP/Sim model is like
an ISS with a true cycle behavior. Not represented in Seamless’ environment, is
the VSP/Tap model which is a VSP that includes hardware in the form of an In-
Circuit-Emulator (ICE). This technique is similar to the ISS but with the extension
of a hardware accelerator. Using an ICE the visibility needed is kept, thus it’s
possible to investigate internal registers and memory.

Native Compiled Software

Simulation using NCS is the fastest method when compared with the ISS
approach because software is run directly on the workstation. NCS is easily
produced by compiling software coded in any high-level language. Thus
debugging of NCS can be done using a standard workstation debugger (e.g.
dbx). The connection to the hardware process is done by placing calls to the
VSP/BIM through an Application Program Interface (API). This interaction only
drives the VSP/BIM pins to their defined values and cycles. The modeled
processors’ internal registers and cache memory is not available in this
approach.

Instruction Set Simulator

An ISS is a software application that models the functional behavior of a
processor’s instruction set. It runs much faster than a hardware simulation
because it needs not to cope with a processor’s internal signal transitions. Since
it is machine code for the target processor that is executed, Users can use any
language supported by the cross-development tools. The ISS reports the number
of clock cycles required for a given instruction to the VSP/CSK. Notification of
external events (e.g. interrupts, resets) from the VSP/BIM is reported to the ISS
by way of the VSP/CSK.

Conclusions

Co-Verification and co-simulation have significantly increased system’s visibility.
Verifying and Simulating software execution using an ISS on a cycle accurate
model, timing information can easily be retrieved and be used as feedback when
determining task execution flow. Co-simulation has shown to be suitable for
verification of task switching, IRQ response time, and software access of
hardware components. Due to the slow speed of hardware simulation it is difficult
to verify large applications and complete systems. Thus, co-simulation will yet not
verify all possible interference’s between hardware and software. In many cases
it surely will reduce design time, but as verification tool for ASIC design in large
systems it will still not exclude the need of FPGAs for fast prototyping. Lack of
functionality like caches and MMUs in processor models (Seamless’) are still a
problem. A model has to be as equivalent to the real hardware as possible,
especially when it comes in use in embedded real-time systems. Today, more
focus is on system-level design, viewing the total project as a complete system
instead of the individual parts—chips, boards, chassis, and software.
Corporations are looking for ways to shorten the project schedule and increase
confidence in the design. At the verification level, this method translates into
selecting the best tools to build a productive environment for both hardware and
software engineers. A single integrated system for logic simulation, simulation
acceleration, and system emulation, along with the concurrent debugging
capabilities of both hardware and software, provides the best platform to get the
project done in the shortest amount of time. The ability to easily transition
between these models and modes of operation provides the greatest flexibility
and control over the entire verification process.

References
[1] R. Klein, “Miami, a Hardware/Software Co-verification System,” in Proc 7th
IEEE Rapid Systems Prototyping Workshop, 1996, p. 173-177

[2] J. Wilson, “Hardware/Software Selected Cycles Solution,” in Proceedings of
the 3rd International Workshop on Hardware/ Software Codesign 1995, p.190
194

[3] M. Stanbro, “Getting to the Bottom of HW/SW Coverification Performance
Claims,” Computer Design, Vol 37 No 12, December 1998, p65-67 "Reproduction
by permission of the International HDL Conference"

[4] J. A. Stankovic and K. Ramamritham, Tutorial ”Hard Real-Time Systems”,
IEEE Computer Society Press, ISBN 0-8186-0819-6

[5] Electronic Engineer, Electronic Design Automation, September 1999

[6] Mentor Graphics, ”Seamless Co-Verification Environment, User’s Reference
Manual”, 1998

[7] Motorola, ”PowerQUICC, MPC860 User’s Manual”, 2002.

[8] Mentor Graphics (Microtec), ”Introduction to XRAY Pro”, 1996

