
Nanometer Prototyping
Dr. Danny Rittman

January 2006

Introduction

As the semiconductor industry moves into new dimensions nanometer areas,
keeping up with ASIC design requirements has become extremely
challenging. Since the introduction of system-on-chip (SoC) design
methodologies in the mid '90's, silicon technologies have been pushed to
support higher performance, lower power and finer geometries. In order to
deliver SoC designs on time, on budget and on market target, FPGA
prototyping method was developed. FPGA prototyping enables an affordable
SoC design hardware and software validation in order to ensure desired SoC
functionality.

Designing an ASIC or a SoC today is an expensive project that involves
complex infrastructure. The design has to meet its market window schedule
in order to be profitable. The increasing cost of mask-sets and engineering
efforts requires that getting a device right the first time is imperative.
Simulation, verification, and validation of a design need to be performed to
ensure that the ASIC or SoC design is correct before tape-out and after
silicon has been received. Re-spins are practically disastrous from both an
increased cost of engineering plus mask sets but also from a lost market
opportunity perspective. Using FPGAs as an ASIC or SoC prototype vehicle
provide a validation tool to address these development challenges and
achieve pre-tape out results. Efficient ASIC prototyping requires extensive
engineering efforts in design stages like hardware/software trade-off testing,
design checking, debug, incremental compilation, pin planning, partitioning,
security and tool automation. This article presents nanometer ASIC/SoC
prototyping using FPGAs method. We’ll observe SoC development, its
challenges and the requirements for FPGA-based prototyping. We’ll discuss
potential solutions, their pros & cons and limitations. We will present one of
the most effective methods to reduce the risk of ASIC/SoC design; structured
ASICs.

The Evolution of platform-based SoC designs

Initially, ASICs were used to replace glue logic. These were assembled
manually as a schematic at the transistor or gate level with almost no reuse
of previously used logic or functions. With the rise of RTL languages such as
Verilog and VHDL, EDA tools emerged to simulate and synthesize logic from
an RTL description to a gate-level netlist. Reusability emerged in cell-based
libraries and portions of reusable HDL code. The ability to reuse HDL
functional code from one design to the next led to the beginnings of a block-
based design methodology. Blocks could be described in RTL, synthesized

into gates and laid out in a physical implementation as virtual components
(VC) referred to as soft, firm or hard cores.

The advancement of process technology approaching 60 nm from 0.13
micron only a few years ago has opened up a significant number of new
applications that can be integrated onto a single chip. Complexities of few
millions gates are now moving to ten’s million-plus gates with hundreds
million gates in sight. It would be a challenge to simply maintain the design
cycles of 8 to 16 months of a few years ago with this increased complexity.
However, demand in consumer and communications products for new
features and capabilities is driving market windows down; the upshot is that
those 8- to 16-month design cycles are now approaching even shorter time
with derivative products requiring shorter introduction times. Consumers are
demanding more functionality in smaller packages at a lower price, which is
yielding to the requirement for full systems to be integrated onto a single
chip, known as system-on-chip, or SoC.

Image Source: National Semiconductors

ASIC vs SoC

What are the main differences between ASIC and SoC design? Typical SoC
includes components like CPUs, DSPs, and memory that have traditionally
been in separate chips. In SoC designs, external IP plays a much larger role.
The designs are simply too big and complex to be developed from scratch
within a single organization. Where custom logic is used, there is tremendous
emphasis on re-use of existing design work, rather than re-inventing the
wheel for each design. Another difference with SoCs is the emphasis on being
able to roll out derivative products quickly. Companies want to capitalize on
market successes by making small changes to existing designs to target new
market niches. The biggest single difference between SoCs and traditional
ASICs, however, is the importance of software. Software has become the key
differentiator among products and often requires major development time.

FPGA Prototyping of ASICs/SoC - Advantages

One of the major issues of today’s ASIC’s and SoC is the design size.
Validating or verifying large amount of devices within ASIC’s or SoC has
become a challenging task. Using FPGA’s for prototyping can relieve the time
bottleneck and remove the compute resources necessity required to
functionally verify a medium-to-large sized design. In addition, prototyping
can provide other, more enticing, benefits. A single prototype can serve to
verify hardware, firmware and application software design functionality all
before 1st article silicon is brought in-house. System performances are

Figure 1: The difference between classic ASIC & SoC

Image Source: Aptix

orders of magnitude faster than RTL simulation and the reliance on accurate
IP models is removed since you’re now running in actual hardware. Further
more, multiple IP’s can be integrated and functionally verified expeditiously.
Hardware/software architectural trade-offs can be evaluated in hardware
rather than at just a high-level of abstraction. So, if the architectural design
initially put too much in hardware, then design blocks can be moved to
software therefore lowering gate counts and lowering power consumption. If,
on the other hand, the architect put too much in software, then design blocks
can be moved into hardware thus increasing performance—a set of trade-offs
you can make during hardware run-time with real world testing instead of
just relying on high-level abstraction tools to make decisive trade-offs.

In some cases with off-the-shelf prototypes, pre-silicon prototypes or
emulators, the hardware can be hooked up to a simulation environment
linking system level verification tools allowing design co-verification with both
simulation and hardware. This provides enormous advantage using FPGA’s
prototypes to validate ASIC’s or SoC designs.

SoC Design & Prerequisites
Typical SoC design starts where the market need for a product is established.
The next stage is to make a decision at the corporate level. A development
process begins, and a hardware project and a software project are defined,
varies from team to team. Each team of developers has its own special needs
and concerns. Hardware developers are concerned about how they will
integrate external IP that they don’t fully understand. The IP can be hard or
soft, with each type presenting different integration challenges. The designs
are getting larger, and time-to-market pressures are getting greater. The
need to develop derivatives must be accounted for in the original design—if
not, developing a derivative can become as tough as a new product.

SoC development process can be segmented into five zones. See Figure 2.

Zone 0: Design starts

Figure 2: SoC Development & Prerequisites

Image Source: Aptix

Zone 1: IP Creation, Architecture exploration. Design stability is finalized.
Zone 2: Firmware and diagnostic development, as well as tasks like booting
the OS.
Zone 3: Application software development and early field testing.
Zone 4: A prototype product is delivered to customers so that they can get a
head start on their development and provide feedback to the design teams.

Using FPGA-based prototypes, this process can happen before silicon is
available. Time-to-market factor is significantly shortened!

The development life cycle requires other prerequisites conditions. First, the
cost has to go down as you move through the cycle. Supplying software
developers with multi-hundred-thousand-dollar platforms would simply be
cost-prohibitive. Second, speed has to go up as you move though the cycle.
Applications software can’t be developed effectively at sub-megahertz
speeds. Software developers need near-real-time speed. Third, the stability
of the design moves from low to high somewhere between Zone 1 and 2.

The requirements for an FPGA based prototype are the next key subjects.

- Re-configurable
It must be re-configurable to permit hardware developers to accommodate
design iterations. For lower-cost units or replicates, the software teams will
need to download new bit-streams from the hardware development team as
new design iterations are created. In addition, the interconnect between the
FPGAs and other system components that comprise the SoC design should be
reprogrammable as well, allowing the FPGA vendor tools the freedom of
deciding which pins are used during place-and-route The FPGA bit-streams
should support optional encryption, in order to permit hardware designers to
ship their prototypes to partners or customers for evaluation, while
maintaining IP security.

- Flexible or “Open” system interface
It must maintain an ‘openness’ to it, allowing DSPs, µ-controllers, memories
and other off-the-shelf components to be plugged straight into the prototype.
It must be able to interface to standard peripherals such as RS232, parallel,
USB, Ethernet, etc.

- Fast
It must run at real-time or near-real-time speeds. Booting an OS at multi-
MHz is required for software developer productivity. Sub-MHz speeds won’t
get the job done. The faster, the better.

- Debug environment
It must provide debugging capabilities, whether visibility is built-in to the

FPGA prototype or it is interfaced to readily available debug tools. It must co-
exist with a simulation environment allowing non-synthesizable blocks to
remain in simulation until the entire implementation is ready for in-circuit
testing. A block-by-block verification strategy can reduce required IP
integration effort required to get the design running in an in-circuit
environment.

- Self-test
It must also be reliable and have built-in self-test capabilities. If a design
doesn’t work in hardware, the designer does not want to spend time
debugging hardware-related issues instead of focusing on design debugging
issues.

SoC Design Mapping & Debugging

The next step is to map the SoC design into FPGA. FPGA vendors and
synthesis providers create products to help designers map their designs into
an FPGA. They even provide debug instrumentation and run-time hooks.
However, mapping and debugging a design into multiple FPGAs from SoC
design coding styles requires additional capabilities in order to harness the
benefits and features provided by the FPGA vendors and synthesis providers.

The top block represents the SoC design that is coded in RTL, or a mixture of
RTL and gate level description if legacy designs are re-used. The design has

Figure 3: Mapping flow of a SoC design to a multi-FPGA prototype

Image Source: Aptix

to undergo logic mapping, which consists of logic synthesis, logic partitioning,
logic optimization and logic debug instrumentation. The design is then
physically mapped, where the partitioned FPGAs’ netlists are placed-and-
routed, and the prototype is placed-and-routed if it contains any
(re)programmable circuits other than FPGAs. The design is then downloaded
into the FPGA prototype and debugged using the prototype debugger.
Mapping SoC design into FPGA prototype is going through some challenges.

1. Design for Prototyping (DFP)

SoC designers code their designs for a sea-of-gates target environment. In
general, a sea-of-gates design may not easily compile into or function in the
defined architectures of FPGAs. To address this challenge, the offending
coding techniques must be detected and fixed—automation is preferred here.
For instance, gated clocks may need to be converted into clock enables, and,
since there are several different gated clock types, caution in detecting and
fixing them is a must. As another example, simulation-friendly coding
techniques are sometimes not synthesis-friendly. Or, certain coding
techniques can result in functional differences between pre- and post-
synthesis simulations. The sooner these coding issues are flagged to the user
in the logic mapping flow, the sooner designers can analyze the problems
without having to spend days debugging the problem in the hardware
prototype. Both Mentor’s HDL Designer and DesignAnalyst tool provide
RMM-compliant (Reuse Methodology Manual) linters that check the code for
FPGA-based coding violations. The tools will provide flags for the user
allowing the user to edit their source code using, for instance, conditional
directives such as ifdef when compiling the design to FPGAs. When the
design has to be compiled to the SoC, the conditional directive setting will
switch to the SoC implementation. Granted, this implies that not all of the
SoC targeted logic will be functionally verified using FPGAs, but this should
only be a sub-set of the entire design. Alternatively, the user can modify
their code to enable their design to be compiled into the FPGA and pass the
linter’s coding checker.

2. Logic Synthesis

A SoC ASIC design usually does not fit into a single FPGA. Synthesis tools are
developed and qualified to handle design sizes that fit into the largest FPGA
available in the market when the tool was released. In fact, designs that
span two or more FPGAs quickly start to bump the limits of synthesis
functionality. In these cases, you’re faced with CPU power and memory
restrictions on designs that span two or more high-end FPGAs.

During the synthesis process, a strategy to retain hierarchy as well as
overcome synthesis restrictions using a bottom-up or middle-down synthesis
is often necessary to synthesize the large design.

3. Multi-FPGA Partitioning

Some SoC designs may simply fit into a single largest density FPGA device.
90-nm technology has increased gate capacity of FPGAs up to 2.2 million
ASIC gate equivalents with additional dedicated resources such as memory
and DSP functionality. In the case where the design can fit into two FPGA
devices, the hardware engineer may hand-partition the design ensuring, for
instance, that performance critical blocks are placed in the same FPGA.
However, if the need to partition the design grows past three or more FPGA
devices, the number of combinations of blocks partitioning quickly increases
to an extent where graphical tools and heuristic algorithms are needed to
help automate the multi- FPGA partitioning process. For instance, consider
partitioning a design with 15 major blocks into three identical FPGAs, of
which any combination of 5 blocks can fit into an FPGA. Using combination
mathematics, there are 756,756 unique combinations of partitioning the
design! The number additionally increases as the number of FPGAs increase.
This brief analysis is based on gate consideration but there’s another
complexity—namely block I/Os. When moving blocks from one FPGA to
another, the shift in I/O counts between the FPGAs is another factor to
consider. Needless to say, both the gate and I/O considerations can make
multi-FPGA partitioning a daunting task. Despite the magnitude and
complexities of these numbers, there are solutions. Mentor’s HDL Designer
provides a graphical group/ungroup capability providing I/O impact analysis
which assists the hardware designer during the partitioning process.

4. Incremental Compilation

Incremental approach is a must in order to reduce the time required to re-
implement changes into the prototype. Frequently, developers focus their
attention on a single mapping and getting their designs into a FPGA
prototype. Yet, once design bugs are detected in hardware, a new revision of
the design needs to be mapped. But, it’s not the entire netlist that was rev’ed
– more often only a small subset of the design needs to be re-mapped. So,
why redo the mapping portions for design blocks that do not need to be re-
mapped since the RTL didn’t change? The SoC-to-Prototype mapping flow
must be incremental.

EDA Solutions

The EDA world has provided efficient prototyping solutions for the past
decade. Typically, ASIC and SoC hardware designers have an affinity for
scripting. Their flows use and apply automation within a single tool flow and
between multiple tools used in projects. Initially, as a SoC design is compiled
into FPGA(s), designers may require of use of graphical tools to assist them.
However, as design iterations increase, the need to automate becomes
dominant. With today’s EDA tools, developing and running tool command
language (Tcl) scripts to control the compilation allows the designer to

perform a wide range of functions, such as compiling a design or writing
procedures to automate common tasks.

Structured ASIC’s – Furthermore Risk Reduction

No doubt, verifying a SoC design using FPGAs for prototyping is a significant
risk reducer. The risk can be further reduced by migrating the FPGA-verified
design into structured ASICs. Structured ASICs can shrink time-to-market
further as the additional design effort required for migration is minimal
compared to re-targeting the design to an ASIC or SoC technology.
Prototyping saves time in more ways than one. A structured ASIC is a non-
reprogrammable device seamlessly migrated from a design that is prototyped
in a FPGA. Based on a fine-grained architecture of transistor cells, structured
ASICs are fabricated on the same advanced nanometer process from the
Semiconductor Manufacturing Company as the FPGA family.

Conclusions

System-on-a-chip (SoC) ASIC technology is one of the most effective ways to
produce high-speed, low-power products. The continuing advances in process
technology give us the ability, in principle, to design ever-more-complex
systems-on-chip at higher speeds. Hence those complexities, combined with
the more complex device and interconnect models that these processes
require, create a design crisis in which designers spend more and more time
on iterating through cycles of synthesis, place and route, physical design and
verification. System-on-chip solutions typically include high-speed, high-
bandwidth mixed-signal interfaces; large, complex digital blocks that
implement multilayer protocols; and significant amounts of on-chip memory.
Designers of those devices push the limits of our EDA tools. ASIC and SoC
prototyping using nanometer FPGAs has several benefits and fewer
drawbacks to get the design out-the-door on time and on budget. Nanometer
technology has enabled more ASIC and SoC designs to be prototyped in a
single FPGA although multiple FPGAs prototyping is still predominant. Some
of the more important associated requirements for logic mapping and
debugging tool flow from RTL-to-gates have been discussed in this paper.
Silicon and tool solutions are available to the ASIC and SoC developers
providing automation, flexibility and visibility to reduce development risk.
The risk can be further reduced by migrating prototyped FPGAs to structured
ASICs.

References

M.R. Stan, Wayne P. Burleson. Bus-Invert Coding for Low Power I/O. IEEE
Transactions on Very Large Scale Integration Systems, 1995.

A. Malik, B. Moyer, D. Cermak. A Programmable Unified Cache Architecture
for Embedded Applications. International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, 2000.

D.H. Albonesi. Selective Cache Ways: On-Demand Cache Resource
Allocation. MICRO, 1999.

S.M. Kang. Accurate Simulation of Power Dissipation in VLSI Circuits. IEEE
Journal of Solid-State Circuits, vol. CS21, no. 5, 1986.

G.Y Yacoub, W.H. Ku. An Accurate Simulation Technique for Short- Circuit
Power Dissipation Based on Current Component Isolation. International
Symposium on Circuits and Systems, 1989.

R. Tjarnstorm. Power Dissipation Estimate by Switch Level Simulation.
International Symposium on Circuits and Systems, 1989.

T.H. Krodel. PowerPlay - Fast Dynamic Power Evaluation Based on Logic
Simulation. International Conference on Computer Aided Design, 1991.

E. Macii, M. Pedram. High-Level Power Modeling, Evaluation, and
Optimization. IEEE Transactions on Computer Aided Design, vol. 17, no. 11,
1998.

D. Marculescu, R. Marculescu, M. Pedram. Information Theoretic Measures
for Power Analysis. IEEE Transactions on Computer Aided Design, vol. 15,
no. 6, 1996.

M. Nemani, F. Najm. Toward a High Level Power Evaluation Capability. IEEE
Transactions on Computer Aided Design, vol. 15, no.
6, 1996.

V. Tiwari, S. Malik, A. Wolfe. Power Analysis of Embedded Software: A First
Step Toward Sofware Power Minimization. IEEE Transactions on Very Large
Scale Integration Systems, vol. 2, no. 4, 1994.

C.T. Hsieh, M. Pedram, H. Mehta, F. Rastgar. Profile Driven Program
Synthesis for Evaluation of System Power Dissipation. Design
Automation Conference, 1997.

C. Barndolese, W. Fornaciari, F. Salice, D. Sciuto. Energy Evaluation for 32-
bit Microprocessor. International Workshop on Hardware/Software Co-
Design, 2000.

R.J. Evans, P.D. Franzon. Energy Consumption Modeling and Optimization for
SRAMs, IEEE Journal of Solid-State Circuits, vol. 30,
no. 5, 1995.

T. Givargis and F. Vahid. Interface Exploration for Reduced Power in Core-
Based Systems, International Symposium on System Synthesis, 1998.

High Density Altera FPGAs - http://www.altera.com

B. Ackland et al., “A Single Chip, 1.6-Billion, 16-b MAC/s Multiprocessor
DSP,” IEEE J. Solid-State Circuits, Mar. 2000, pp. 412-424.
A. Agrawal, “Raw Computation,” Scientific Am., Aug. 1999, pp. 60-63.
January 2002 77

L. Benini and G. De Micheli, “System-Level Power Optimization: Techniques
and Tools,” ACM Trans. Design Automation of Electronic Systems, Apr. 2000,
pp. 115-192.

R. Hegde and N. Shanbhag, “Toward Achieving Energy Efficiency in Presence
of Deep Submicron Noise,” IEEE Trans. VLSI Systems, Aug. 2000, pp. 379-
391.

W. Dally and J. Poulton, Digital Systems Engineering, Cambridge Univ. Press,
New York, 1998.

J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks: An
Engineering Approach, IEEE CS Press, Los Alamitos, Calif., 1997.

P. Guerrier and A. Grenier, “A Generic Architecture for On-Chip Packet-
Switched Interconnections,” Proc. IEEE Design Automation and Test in
Europe (DATE 2000), IEEE Press, Piscataway, N.J., 2000, pp. 250-256.

R. Ho, K. Mai, and M. Horowitz, “The Future of Wires,” Proc. IEEE, Apr. 2001,
pp. 490-504.

D. Sylvester and K. Keutzer, “A Global Wiring Paradigm for Deep Submicron
Design,” IEEE Trans. CAD/ICAS, Feb. 2000, pp. 242-252.

Todd Moore and Rick Schmalbach Sep 1, 2003 - RFDesign

