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Introduction 
 
As the semiconductor industry moves into new dimensions nanometer areas, 
keeping up with ASIC design requirements has become extremely 
challenging. Since the introduction of system-on-chip (SoC) design 
methodologies in the mid '90's, silicon technologies have been pushed to 
support higher performance, lower power and finer geometries. In order to 
deliver SoC designs on time, on budget and on market target, FPGA 
prototyping method was developed. FPGA prototyping enables an affordable 
SoC design hardware and software validation in order to ensure desired SoC 
functionality.  
 
Designing an ASIC or a SoC today is an expensive project that involves 
complex infrastructure. The design has to meet its market window schedule 
in order to be profitable. The increasing cost of mask-sets and engineering 
efforts requires that getting a device right the first time is imperative. 
Simulation, verification, and validation of a design need to be performed to 
ensure that the ASIC or SoC design is correct before tape-out and after 
silicon has been received. Re-spins are practically disastrous from both an 
increased cost of engineering plus mask sets but also from a lost market 
opportunity perspective. Using FPGAs as an ASIC or SoC prototype vehicle 
provide a validation tool to address these development challenges and 
achieve pre-tape out results. Efficient ASIC prototyping requires extensive 
engineering efforts in design stages like hardware/software trade-off testing, 
design checking, debug, incremental compilation, pin planning, partitioning, 
security and tool automation. This article presents nanometer ASIC/SoC 
prototyping using FPGAs method. We’ll observe SoC development, its 
challenges and the requirements for FPGA-based prototyping. We’ll discuss 
potential solutions, their pros & cons and limitations. We will present one of 
the most effective methods to reduce the risk of ASIC/SoC design; structured 
ASICs.  
 

The Evolution of platform-based SoC designs 

 
Initially, ASICs were used to replace glue logic. These were assembled 
manually as a schematic at the transistor or gate level with almost no reuse 
of previously used logic or functions. With the rise of RTL languages such as 
Verilog and VHDL, EDA tools emerged to simulate and synthesize logic from 
an RTL description to a gate-level netlist. Reusability emerged in cell-based 
libraries and portions of reusable HDL code. The ability to reuse HDL 
functional code from one design to the next led to the beginnings of a block-
based design methodology. Blocks could be described in RTL, synthesized 



into gates and laid out in a physical implementation as virtual components 
(VC) referred to as soft, firm or hard cores.  

The advancement of process technology approaching 60 nm from 0.13 
micron only a few years ago has opened up a significant number of new 
applications that can be integrated onto a single chip. Complexities of few 
millions gates are now moving to ten’s million-plus gates with hundreds 
million gates in sight. It would be a challenge to simply maintain the design 
cycles of 8 to 16 months of a few years ago with this increased complexity. 
However, demand in consumer and communications products for new 
features and capabilities is driving market windows down; the upshot is that 
those 8- to 16-month design cycles are now approaching even shorter time 
with derivative products requiring shorter introduction times. Consumers are 
demanding more functionality in smaller packages at a lower price, which is 
yielding to the requirement for full systems to be integrated onto a single 
chip, known as system-on-chip, or SoC.  
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ASIC vs SoC 
 
What are the main differences between ASIC and SoC design? Typical SoC 
includes components like CPUs, DSPs, and memory that have traditionally 
been in separate chips. In SoC designs, external IP plays a much larger role. 
The designs are simply too big and complex to be developed from scratch 
within a single organization. Where custom logic is used, there is tremendous 
emphasis on re-use of existing design work, rather than re-inventing the 
wheel for each design. Another difference with SoCs is the emphasis on being 
able to roll out derivative products quickly. Companies want to capitalize on 
market successes by making small changes to existing designs to target new 
market niches. The biggest single difference between SoCs and traditional 
ASICs, however, is the importance of software. Software has become the key 
differentiator among products and often requires major development time. 

 

 

 

 

 

 

 

 

 

 

 

 

 
FPGA Prototyping of ASICs/SoC - Advantages 
 
One of the major issues of today’s ASIC’s and SoC is the design size. 
Validating or verifying large amount of devices within ASIC’s or SoC has 
become a challenging task. Using FPGA’s for prototyping can relieve the time 
bottleneck and remove the compute resources necessity required to 
functionally verify a medium-to-large sized design. In addition, prototyping 
can provide other, more enticing, benefits. A single prototype can serve to 
verify hardware, firmware and application software design functionality all 
before 1st article silicon is brought in-house. System performances are 

 
Figure 1: The difference between classic ASIC & SoC 
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orders of magnitude faster than RTL simulation and the reliance on accurate 
IP models is removed since you’re now running in actual hardware. Further 
more, multiple IP’s can be integrated and functionally verified expeditiously. 
Hardware/software architectural trade-offs can be evaluated in hardware 
rather than at just a high-level of abstraction. So, if the architectural design 
initially put too much in hardware, then design blocks can be moved to 
software therefore lowering gate counts and lowering power consumption. If, 
on the other hand, the architect put too much in software, then design blocks 
can be moved into hardware thus increasing performance—a set of trade-offs 
you can make during hardware run-time with real world testing instead of 
just relying on high-level abstraction tools to make decisive trade-offs. 
 
In some cases with off-the-shelf prototypes, pre-silicon prototypes or 
emulators, the hardware can be hooked up to a simulation environment 
linking system level verification tools allowing design co-verification with both 
simulation and hardware. This provides enormous advantage using FPGA’s 
prototypes to validate ASIC’s or SoC designs.  
 
SoC Design & Prerequisites 
Typical SoC design starts where the market need for a product is established. 
The next stage is to make a decision at the corporate level.  A development 
process begins, and a hardware project and a software project are defined, 
varies from team to team. Each team of developers has its own special needs 
and concerns. Hardware developers are concerned about how they will 
integrate external IP that they don’t fully understand. The IP can be hard or 
soft, with each type presenting different integration challenges. The designs 
are getting larger, and time-to-market pressures are getting greater. The 
need to develop derivatives must be accounted for in the original design—if 
not, developing a derivative can become as tough as a new product.  

SoC development process can be segmented into five zones. See Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Zone 0:  Design starts  

 
Figure 2: SoC Development & Prerequisites 
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Zone 1: IP Creation, Architecture exploration. Design stability is finalized.  
Zone 2: Firmware and diagnostic development, as well as tasks like booting 
the OS. 
Zone 3: Application software development and early field testing. 
Zone 4: A prototype product is delivered to customers so that they can get a 
head start on their development and provide feedback to the design teams. 
 
Using FPGA-based prototypes, this process can happen before silicon is 
available. Time-to-market factor is significantly shortened! 
 

The development life cycle requires other prerequisites conditions. First, the 
cost has to go down as you move through the cycle. Supplying software 
developers with multi-hundred-thousand-dollar platforms would simply be 
cost-prohibitive. Second, speed has to go up as you move though the cycle. 
Applications software can’t be developed effectively at sub-megahertz 
speeds. Software developers need near-real-time speed. Third, the stability 
of the design moves from low to high somewhere between Zone 1 and 2. 

The requirements for an FPGA based prototype are the next key subjects. 

- Re-configurable 
It must be re-configurable to permit hardware developers to accommodate 
design iterations. For lower-cost units or replicates, the software teams will 
need to download new bit-streams from the hardware development team as 
new design iterations are created. In addition, the interconnect between the 
FPGAs and other system components that comprise the SoC design should be 
reprogrammable as well, allowing the FPGA vendor tools the freedom of 
deciding which pins are used during place-and-route The FPGA bit-streams 
should support optional encryption, in order to permit hardware designers to 
ship their prototypes to partners or customers for evaluation, while 
maintaining IP security. 

- Flexible or “Open” system interface 
It must maintain an ‘openness’ to it, allowing DSPs, µ-controllers, memories 
and other off-the-shelf components to be plugged straight into the prototype. 
It must be able to interface to standard peripherals such as RS232, parallel, 
USB, Ethernet, etc.  

- Fast 
It must run at real-time or near-real-time speeds. Booting an OS at multi-
MHz is required for software developer productivity. Sub-MHz speeds won’t 
get the job done. The faster, the better. 

- Debug environment 
It must provide debugging capabilities, whether visibility is built-in to the 



FPGA prototype or it is interfaced to readily available debug tools. It must co-
exist with a simulation environment allowing non-synthesizable blocks to 
remain in simulation until the entire implementation is ready for in-circuit 
testing. A block-by-block verification strategy can reduce required IP 
integration effort required to get the design running in an in-circuit 
environment. 

- Self-test  
It must also be reliable and have built-in self-test capabilities. If a design 
doesn’t work in hardware, the designer does not want to spend time 
debugging hardware-related issues instead of focusing on design debugging 
issues. 

 

SoC Design Mapping & Debugging 

The next step is to map the SoC design into FPGA. FPGA vendors and 
synthesis providers create products to help designers map their designs into 
an FPGA. They even provide debug instrumentation and run-time hooks. 
However, mapping and debugging a design into multiple FPGAs from SoC 
design coding styles requires additional capabilities in order to harness the 
benefits and features provided by the FPGA vendors and synthesis providers.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The top block represents the SoC design that is coded in RTL, or a mixture of 
RTL and gate level description if legacy designs are re-used. The design has 

 
Figure 3: Mapping flow of a SoC design to a multi-FPGA prototype 
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to undergo logic mapping, which consists of logic synthesis, logic partitioning, 
logic optimization and logic debug instrumentation. The design is then 
physically mapped, where the partitioned FPGAs’ netlists are placed-and-
routed, and the prototype is placed-and-routed if it contains any 
(re)programmable circuits other than FPGAs. The design is then downloaded 
into the FPGA prototype and debugged using the prototype debugger. 
Mapping SoC design into FPGA prototype is going through some challenges. 

1. Design for Prototyping (DFP) 

SoC designers code their designs for a sea-of-gates target environment. In 
general, a sea-of-gates design may not easily compile into or function in the 
defined architectures of FPGAs. To address this challenge, the offending 
coding techniques must be detected and fixed—automation is preferred here. 
For instance, gated clocks may need to be converted into clock enables, and, 
since there are several different gated clock types, caution in detecting and 
fixing them is a must. As another example, simulation-friendly coding 
techniques are sometimes not synthesis-friendly. Or, certain coding 
techniques can result in functional differences between pre- and post-
synthesis simulations. The sooner these coding issues are flagged to the user 
in the logic mapping flow, the sooner designers can analyze the problems 
without having to spend days debugging the problem in the hardware 
prototype. Both Mentor’s HDL Designer and DesignAnalyst tool provide 
RMM-compliant (Reuse Methodology Manual) linters that check the code for 
FPGA-based coding violations. The tools will provide flags for the user 
allowing the user to edit their source code using, for instance, conditional 
directives such as ifdef when compiling the design to FPGAs. When the 
design has to be compiled to the SoC, the conditional directive setting will 
switch to the SoC implementation. Granted, this implies that not all of the 
SoC targeted logic will be functionally verified using FPGAs, but this should 
only be a sub-set of the entire design. Alternatively, the user can modify 
their code to enable their design to be compiled into the FPGA and pass the 
linter’s coding checker. 
 
2. Logic Synthesis 

A SoC ASIC design usually does not fit into a single FPGA. Synthesis tools are 
developed and qualified to handle design sizes that fit into the largest FPGA 
available in the market when the tool was released. In fact, designs that 
span two or more FPGAs quickly start to bump the limits of synthesis 
functionality. In these cases, you’re faced with CPU power and memory 
restrictions on designs that span two or more high-end FPGAs.  

During the synthesis process, a strategy to retain hierarchy as well as 
overcome synthesis restrictions using a bottom-up or middle-down synthesis 
is often necessary to synthesize the large design. 
 



3. Multi-FPGA Partitioning 
 
Some SoC designs may simply fit into a single largest density FPGA device. 
90-nm technology has increased gate capacity of FPGAs up to 2.2 million 
ASIC gate equivalents with additional dedicated resources such as memory 
and DSP functionality. In the case where the design can fit into two FPGA 
devices, the hardware engineer may hand-partition the design ensuring, for 
instance, that performance critical blocks are placed in the same FPGA. 
However, if the need to partition the design grows past three or more FPGA 
devices, the number of combinations of blocks partitioning quickly increases 
to an extent where graphical tools and heuristic algorithms are needed to 
help automate the multi- FPGA partitioning process. For instance, consider 
partitioning a design with 15 major blocks into three identical FPGAs, of 
which any combination of 5 blocks can fit into an FPGA. Using combination 
mathematics, there are 756,756 unique combinations of partitioning the 
design! The number additionally increases as the number of FPGAs increase. 
This brief analysis is based on gate consideration but there’s another 
complexity—namely block I/Os. When moving blocks from one FPGA to 
another, the shift in I/O counts between the FPGAs is another factor to 
consider. Needless to say, both the gate and I/O considerations can make 
multi-FPGA partitioning a daunting task. Despite the magnitude and 
complexities of these numbers, there are solutions. Mentor’s HDL Designer 
provides a graphical group/ungroup capability providing I/O impact analysis 
which assists the hardware designer during the partitioning process. 
 
4. Incremental Compilation 
 
Incremental approach is a must in order to reduce the time required to re-
implement changes into the prototype. Frequently, developers focus their 
attention on a single mapping and getting their designs into a FPGA 
prototype. Yet, once design bugs are detected in hardware, a new revision of 
the design needs to be mapped. But, it’s not the entire netlist that was rev’ed 
– more often only a small subset of the design needs to be re-mapped. So, 
why redo the mapping portions for design blocks that do not need to be re-
mapped since the RTL didn’t change? The SoC-to-Prototype mapping flow 
must be incremental. 
 
EDA Solutions 
 
The EDA world has provided efficient prototyping solutions for the past 
decade. Typically, ASIC and SoC hardware designers have an affinity for 
scripting. Their flows use and apply automation within a single tool flow and 
between multiple tools used in projects. Initially, as a SoC design is compiled 
into FPGA(s), designers may require of use of graphical tools to assist them. 
However, as design iterations increase, the need to automate becomes 
dominant.  With today’s EDA tools, developing and running tool command 
language (Tcl) scripts to control the compilation allows the designer to 



perform a wide range of functions, such as compiling a design or writing 
procedures to automate common tasks.  
 
Structured ASIC’s – Furthermore Risk Reduction 
 
No doubt, verifying a SoC design using FPGAs for prototyping is a significant 
risk reducer. The risk can be further reduced by migrating the FPGA-verified 
design into structured ASICs. Structured ASICs can shrink time-to-market 
further as the additional design effort required for migration is minimal 
compared to re-targeting the design to an ASIC or SoC technology. 
Prototyping saves time in more ways than one.  A structured ASIC is a non-
reprogrammable device seamlessly migrated from a design that is prototyped 
in a FPGA. Based on a fine-grained architecture of transistor cells, structured 
ASICs are fabricated on the same advanced nanometer process from the 
Semiconductor Manufacturing Company as the FPGA family.  
 

Conclusions 
 

System-on-a-chip (SoC) ASIC technology is one of the most effective ways to 
produce high-speed, low-power products. The continuing advances in process 
technology give us the ability, in principle, to design ever-more-complex 
systems-on-chip at higher speeds. Hence those complexities, combined with 
the more complex device and interconnect models that these processes 
require, create a design crisis in which designers spend more and more time 
on iterating through cycles of synthesis, place and route, physical design and 
verification. System-on-chip solutions typically include high-speed, high-
bandwidth mixed-signal interfaces; large, complex digital blocks that 
implement multilayer protocols; and significant amounts of on-chip memory. 
Designers of those devices push the limits of our EDA tools. ASIC and SoC 
prototyping using nanometer FPGAs has several benefits and fewer 
drawbacks to get the design out-the-door on time and on budget. Nanometer 
technology has enabled more ASIC and SoC designs to be prototyped in a 
single FPGA although multiple FPGAs prototyping is still predominant. Some 
of the more important associated requirements for logic mapping and 
debugging tool flow from RTL-to-gates have been discussed in this paper. 
Silicon and tool solutions are available to the ASIC and SoC developers 
providing automation, flexibility and visibility to reduce development risk. 
The risk can be further reduced by migrating prototyped FPGAs to structured 
ASICs.  
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