

The Role of Scripting in Turning EDA Flows
By Dr. Danny Rittman, July 2004

Introduction

Scripting languages have become a key factor in the EDA world due to
the fact that they are well suited for high level programming and
system integration. The code required for a same task is usually much
less compared with a system programming language such as C/C++
or similar. (Estimated by a factor of 5X to 10X) However, it is not
efficient or optimal for performance oriented tasks, for which the
traditional system programming languages can work better. One
approach naturally combines a scripting language at the top layer and
uses dedicated and optimized algorithm engines from system
programming languages for the underlying structures. This approach is
very effective, flexible, and easy for scripting to embed with an
application system. EDA tools are often characterized as an efficient
core engine optimized for performance based on a system
programming language. Hence this core often lacks the ability to
integrate with the other existing systems, or need more flexible
scripting and customization capability. Integrating EDA tools to enable
interoperability and ease of use has been a very time-consuming and
complicate process. Traditionally, each tool comes with a unique and
simple set of commands for interactive use. In addition EDA platforms
are offering their own proprietary macro languages. The most common
are SKILL language for Cadence[1], Scheme for Synopsys[2] and
Ample for Mentor Graphics[3]. These macro languages provide very
powerful capabilities to create customizable features for a wide variety
of purposes. The main disadvantage of these macro languages is that
they are interpreter based. This reduces the responding time and
therefore affecting the entire program performance. Indeed,
complicate programs can be developed but when real-time response is
needed a major delay may accrue especially if advanced mathematical
algorithms are used. The code is hard to reuse and rapid prototyping
of a new algorithm is fairly hard task. As we are stepping into VDSM
arena the need for globalization is become a necessity. Interfacing to
verification tools, importing/exporting data and similar tasks are
demanding a different type of scripting approach.

A language that is easy and mainly intuitive! The EDA world was
introduced to scripting language like Perl, Tcl and Python. These
scripting languages enabled easy integration of application’s interface
(API)’s, interacting with industry’s standard EDA tools and many other
essential tasks. These scripting tools enable full programming
capability connecting to EDA tools, and most important of all, any tool
can be interoperated over a uniform platform on an API level. Rapid
prototyping of new algorithms and entire systems becomes much
easier and faster. Software reuse has become easier. Many existing
extension packages for the scripting languages can be therefore
integrated such as Tcl for graphic user interface (GUI), and CPAN[4]
collection for various Perl applications. From a standpoint of high
software quality, this approach also provides a very good vehicle for
comprehensive testing of each API within EDA tools. Along the years
corporations have developed entire programs and utilities using
scripting languages that became an integral part of their design flow.

Tools Integration

One of the major usages of scripting language is tools integration
providing efficient design customization capability to the end-users.
After loading all tools within a platform, user can choose specific
components based on the task need. This enables tool vendors to
develop their own application system independently and hook it up
later, or even create revisions without affecting the system integrity.
The same methodology can be used for design flows integration. Using
scripting language an entire design flow may be assembled together
running few applications serially or in parallel. This opens a whole
world of possibilities using EDA tools from different vendors to provide
advanced design flows. Furthermore, using scripting users can create
automate an entire flow and iterates tools in a sequence. Another
useful feature is to access specific features within tools. Major EDA
vendors are gradually providing more access to internal functions
using scripting language like Tcl.

Software Reuse, Testing and API’s Access

One of the key demands from scripting language is the capability to
create rapid prototypes. Many high level algorithms are not even
possible without the underlying database and supporting routines. It is
desired that an EDA tool developer can implement a new algorithm
efficiently by leveraging existing software components. Scripting
languages can bridge the gap by providing a full programming
environment and linking with existing tools from a higher level of
language description without any compilation. EDA tools have been
lacking of interoperability for a long time. The industry is trying to
provide a true interoperability, not just data exchange. The result was
the development of OpenAccess which is a community effort to provide
true interoperability among IC design tools through an open standard
data API and reference database supporting that API for IC design.
OpenAccess API’s provide a high performance, high capacity electronic
design database with architecture designed for easy integration and
fast application development. Access to the reference database source

Scripting EDA tools Integration

code is provided to allow companies to offer contributions to future
database enhancements and add proprietary extensions. It will also
allow for this database to be used in production environments where
software maintenance is critical. Many EDA vendors are joining to
support OpenAccess as part of the efforts to provide better service.
One of the most popular tasks for scripting languages is to perform as
a GUI or shall interface to access API functions. End-users can access
APIs to do customization to fit their need using most popular scripting
languages such as Perl or Tcl. Advanced GUI’s can be developed by Tcl
to lunch internal functions or to activate routines. The ease of use of
high level language enables users to quickly develop graphical or shall
based wrappers and application to run design flows. Another highlight
of scripting languages is testing! Comprehensive testing of a software
routine is generally very difficult and time-consuming. The common
testing approach is based on an outer input and output pair. It can not
handle finer grain testing for any specific API. However, with the
integrated APIs in the scripting language, a tool developer can design
a set of very dedicated scripts to test each API and does not have to
compile another testing program to intervene with the production code.
A series of regression tests for the API can be easily created to
guarantee high software quality.

Scripting Languages

Scripting languages are considered to be RAD (Rapid Application
Development) tools that allow programmers/users to create
applications in very little time. These languages have become very
popular programming tools, particularly in the EDA world, and have
more programmers and lines of code than any of its nearest
competitors. We can categorize scripting languages to two main types
which are commercial tools macro/scripting and public domain. The
industry standard EDA vendors like Cadence, Synopsys and Mentor
have developed their own platforms that are equipped with strong
programming proprietary languages which enable highly complex
development. The other types are shareware tools that are available
everywhere. The two leading scripting languages in the EDA arena are
Tcl and Perl. There are also Python, Ruby and the standard shells that
are equipped with UNIX, Linux platforms. (cshell, tcshell, kshell, etc’)
Scripting languages are considered to be one of the main
achievements of the open source movement. The scripting languages
are fairly simple, flexible and protect us from the "over complexity" of

the system tools. Open source is the most valuable when you are still
able to change the source and this is where scripting languages come
into play, as they help to write the same applications in a fraction of
time. Up to few years ago Perl was the ruler in the EDA world as the
main scripting tool. In the recent few years Tcl (Tool Command
Language) has become the rising star due to an almost zero learning
curve. Compared to Perl that requires memorizing many syntax and
idioms Tcl is based on maybe a dozen basic commands to get you up
and running. Major EDA vendors offer access to their tool’s internal
functions via Tcl scripting and it looks like it became a standard.

Conclusion

Scripting languages like Tcl and Perl were created for rapid control and
systems integration. In the recent years Tcl has become an integral
part of design houses design flows as Perl remain a handy tool for
other useful tasks. EDA vendors are standardizing on platform-
independent Tcl scripts to automate repetitive design tasks and extend
the basic features of their tools. Since most of design flows use
applications from multiple vendors, a designer now only needs to learn
Tcl in order to control multiple tools. Furthermore, Tcl's power,
versatility and ease of use is fast being adopted for a wider range of
methodology tasks such as data processing; file management and tool
interface solutions. No Doubt, the usage of scripting languages created
a whole world of possibilities for the EDA world and therefore became
an integral part of today’s design flows.

References

[1] http://www.cadence.com.
[2] http://www.avanticorp.com, http://www.synopsys.com
[3] http://www.mentor.com.
[4] “Comprehensive Perl Archive Network”.
http://www.cpan.org.
[5] J. K. Ousterhout. “Scripting: Higher Level Programming for
the 21st Century”. IEEE Computer magazine, Mar. 1998.
[6] E. M. Sentovich and et al. “SIS: A System for Sequential
Circuit Synthesis”. Electronics Research Laboratory Memo.
No. ERL/UCB M92/41, May 1992.
[7] L. Wall, T. Christiansen, and R. Schwartz. “Programming
Perl”. O’Reilly and Assoicates, 1996.
 [8] “Magic - A VLSI Layout System”.
http://www.research.digital.com/wrl/projects/magic/magic.html.

[9] “ScriptEDA”.
http://www-cad.eecs.berkeley.edu/_pinhong/scriptEDA.
[10] “Simplified Wrapper and Interface Generator”.
http://www.swig.org.
[11] A. Aziz and et al. “VIS User’s Manual”. http://wwwcad.
eecs.berkeley.edu/Respep/Research/vis/index.html.
[12] D.M. Beazley, D. Fletcher, and D. Dumont. “Perl Extension
Building with SWIG”. O’Reilly Perl Conference 2.0, pages
17–20, Aug. 1998.
[13] J. K. Ousterhout. “Tcl and the Tk Toolkit”. Addison-Wesley,
1994.
[14] Doulos, A Brief History of VHDL,
http://www.doulos.com/fi/desguidevhdl/vb2_history.htm.
[15] Doulos, A Brief History of Verilog,
http://www.doulos.com/fi/desguidevlg/vb2_history.htm
[16] Johnson, Jeff, GUI bloopers: Don’ts and Do’s for Software
Developers and Web Designers, Morgan Kaufman Publishers, San
Francisco, (2000), pp 42.
[17] MSDN web site:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winui/winui/windowsuserinterface/windowing/multipledocumentinte
rface.asp
[18] Petasis, George, TkDND,
http://www.iit.demokritos.gr/~petasis/Tcl/tkDND/tkDND.html.
[19] Schwartz, Michael I., GDI and Print extensions for Tcl,
http://www.du.edu/~mschwart/Gdi.txt,
http://www.du.edu/~mschwart/Printer.txt.
[20] Svensson, Jesper, Mysund MDI
http://www.geocities.com/SiliconValley/Lab/6236/tcltk.html

